Алкены все о них. Алкены. Получение, химические свойства и применение алкенов. Горение на воздухе

Для алкенов характерны, прежде всего, реакции присоединения по двойной связи. В основном эти реакции идут по ионному механизму. Пи-связь разрывается, и образуются две новые сигма-связи. Напомню, что для алканов типичными были реакции замещения и шли они по радикальному механизму. Присоединяться к алкенам могут молекулы водорода, эти реакции называются гидрирование, молекулы воды, гидратация, галогены — галогенирование, галогенводороды — гидрогалогенирование. Но обо всем по порядку.

Реакции присоединения по двойной связи

Итак, первое химическое свойство — способность присоединять галогеноводороды, гидрогалогенирование.

Пропен и остальные алкены реагируют с галогеноводородами по правилу Марковникова.

Атом водорода присоединяется к наиболее гидрированному, или правильнее сказать гидрогенизированному, атому углерода.

Вторым номером в нашем списке свойств будет гидратация, присоединение воды.

Реакция проходит при нагревании в присутствии кислоты — обычно серной или фосфорной. Присоединение воды происходит также по правилу Марковникова, то есть первичный спирт можно получить только гидратацией этилена, остальные неразветвленные алкены дают вторичные спирты.

И для гидрогалогениерования и для гидратации существуют исключения из правила Марковникова. Во-первых, против этого правила присоединение протекает в присутствии пероксидов.

Во-вторых, для производных алкенов, в которых присуствуют электронноакцепторне группы. Например, для 3,3,3-трифторпропена-1.

Атомы фтора за счет высокой электроотрицательности оттягивают на себя электронную плотность по цепи сигма-связей. Такое явление называется отрицательным индуктивным эффектом.

Из-за этого происходит смещение подвижных пи-электронов двойной связи и у крайнего атома углерода оказывается частичный положительный заряд, который обычно обозначается как дельта плюс. Именно к нему и пойдет отрицательно заряженный ион брома, а катион водорода присоединится к наименее гидрированному атому углерода.

Помимо трифторметильной группы отрицательным индуктивным эффектом обладает, например, трихлорметильная группа, нитрогруппа, карбоксильная группа и некоторые другие.

Этот второй случай нарушения правила Марковникова в ЕГЭ встречается очень редко, но все-таки желательно иметь его в виду, если вы планируете сдать экзамен на максимальный балл.

Третье химическое свойство — присоединение молекул галогенов.

В первую очередь это касается брома, поскольку данная реакция является качественной на кратную связь. При пропускании, например, этилена через бромную воду, то есть раствор брома в воде, имеющий коричневый цвет, происходит ее обесцвечивание. Если пропускать через бромную воду смесь газов, например, этан и этен, то можно получить чистый этан без примеси этена, поскольку тот останется в реакционной колбе в виде дибромэтана, представляющего собой жидкость.

Особым образом стоит отметить реакцию алкенов в газовой фазе при сильном нагревании, например, с хлором.

При таких условиях протекает не реакция присоединения, а реакция замещения. При чем исключительно по альфа-атому углерода, то есть атому, соседствующему с двойной связью. В данном случае получается 3-хлорпропен-1. Эти реакции на экзамене встречаются нечасто, поэтому большинство учеников их не помнит и, как правило, совершает ошибки.

Четвертым номером идет реакция гидрирования, а вместе с ней и реакция дегидрирования. То есть присоединение или отщепление водорода.

Гидрирование происходит при не очень высокой температуре на никелевом катализаторе. При более высокой температуре возможно дегидрирование с получением алкинов.

Пятым свойством алкенов является способность к полимеризации, когда сотни и тысячи молекул алкена за счет разрыва пи-связи и образования сигма-свзяей друг с другом образуют очень длинные и прочные цепочки.

В данном случае получился полиэтилен. Обратите внимание, что в получившейся молекуле кратные связи отсутствуют. Такие вещества называются полимерами, исходные молекулы называются мономерами, повторяющийся фрагмент — это элементарное звено полимера, а число n — степень полимеризации.

Также возможны реакции получения других важных полимерных материалов, например, полипропилена.

Еще один важный полимер — поливинилхлорид.

Исходным веществом для производства этого полимера является хлорэтен, тривиальное название которого винилхлорид. Поскольку этот непредельный заместитель называется винил. Часто встречающаяся аббревиатура на пластмассовых изделиях ПВХ как раз расшифровывается как поливинилхлорид.

Мы обсудили пять свойств, которые представляли собой реакции присоединения по двойной связи. Теперь обратимся к реакциям окисления .

Реакции окисления алкенов

Шестое химическое свойство в нашем общем списке — это мягкое окисление или реакция Вагнера. Оно протекает при воздействии на алкен водным раствором перманганата калия на холоду, поэтому часто в экзаменационных заданиях указывают температуру ноль градусов.

В результате получается двухатомный спирт. В данном случае этиленгликоль, а в целом такие спирты носят общее название гликоли. В процессе реакции фиолетово-розовый раствор перманганата обесцвечивается, поэтому эта реакция также является качественной на двойную связь. Марганец в нейтральной среде из степени окисления +7 восстанавливается до степени окисления +4. Рассмотрим еще несколько примеров. УРАВНЕНИЕ

Здесь получился пропандиол-1,2. Однако таким же образом будут реагировать и циклические алкены. УРАВНЕНИЕ

Еще один вариант, когда двойная связь находится, например, в боковой цепи ароматических углеводородов. Регулярно в заданиях егэ встречается реакция Вагнера с участием стирола, его второе название винилбензол.

Я надеюсь, что представил вашему вниманию достаточно примеров, чтобы вы поняли, что мягкое окисление двойной связи всегда подчиняется довольно простому правилу — пи-связь разрывается и к каждому атому углерода присоединяется гидроксигруппа.

Теперь, что касается жесткого окисления. Это будет наше седьмое свойство. Такое окисление происходит, когда алкен реагирует с кислотным раствором перманганата калия при нагревании.

Происходит деструкция молекулы, то есть ее разрушение по двойной связи. В случае бутена-2 получились две молекулы уксусной кислоты. В целом же, по продуктам окисления можно судить о положении кратной связи в углеродной цепи.

При окислении бутена-1 получается молекула пропионовой (пропановой) кислоты и углекислый газ.

В случае этилена получится две молекулы углекислого газа. Во всех случаях в кислой среде марганец из степени окисления +7 восстанавливается до +2.

И, наконец, восьмое свойство — полное окисление или горение.

Алкены сгорают, как и другие углеводороды, до углекислого газа и воды. Запишем уравнение сгорания алкенов в общем виде.

Молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле алкена, поскольку в состав молекулы CO 2 входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа плюс n из воды, итого 3n. Слева атомов кислорода столько же, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть 3n/2 молекул кислорода. Можно записать 1,5n.

Мы рассмотрели восемь химических свойств алкенов.

Общая формула алкенов: C n H 2n (n 2)

Первые представители гомологического ряда алкенов:

Формулы алкенов можно составить из соответствующих формул алканов (предельных углеводородов). Названия алкенов образуют заменой суффикса -ан соответствующего алкана на -ен или –илен: бутан – бутилен, пентан –пентен и т.д. Номер атома углерода с двойной связью обозначается арабской цифрой после названия.

Атомы углерода, участвующие в образовании двойной связи находятся в состоянии sp-гибридизации. Три -связи, образованные гибридными орбиталям и, расположены в одной плоскости под углом 120° друг к другу. Дополнительная -связь образуется путем бокового перекрывания негибридных р-орбиталей:


Длина двойной связи С=С (0,133нм) меньше длины одинарной связи (0,154 нм). Энергия двойной связи меньше удвоенного значения энергии одинарной связи, поскольку энергия -связи меньше энергии -связи.

Изомеры алкенов

Все алкены кроме этилена имеют изомеры. Для алкенов характерна изомерия углеродного скелета, изомерия положения двойной связи, межклассовая и пространственная изомерии.

Межклассовым изомером пропена (C 3 H 6) является циклопропан. Начиная с бутена (C 4 H 8) появляется изомерия по положению двойной связи (бутен-1 и бутен-2), изомерия углеродного скелета (метилпропен или изобутилен), а также пространственная изомерия (цис-бутен-2 и транс-бутен-2). В цис- изомерах заместители расположены по одну сторону, а в транс- изомерах – по разные стороны от двойной связи.

Химические свойства и химическая активность алкенов определяются наличием в их молекулах двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения: гидрогалогенирование, гидратация, галогенирование, гидрирование, полимеризация.

Качественная реакция на двойную связь – обесцвечивание бромной воды:

Примеры решения задач по теме «формула алкенов»

ПРИМЕР 1

Задание Сколько изомеров, способных обесцвечивать бромную воду имеет вещество состава С 3 Н 5 Сl? Напишите структурные формулы этих изомеров
Решение С 3 Н 5 Сl представляет собой монохлорпроизводное от углеводорода С 3 Н 6 . Этой формуле отвечает либо пропен – углеводород с одной двойной связью, либо циклопропан (циклический углеводород). Данное вещество обесцвечивает бромную воду, значит, в его составе есть двойная связь. Три атома углерода могут образовать только такую структуру:

поскольку изомерия углеродного скелета и положения двойной связи при таком количестве атомов углерода невозможна.

Структурная изомерия в данной молекуле возможна только за счет изменения положения атома хлора относительно двойной связи:

Для 1-хлорпропена возможна цис-транс-изомерия:

Ответ Условию задачи удовлетворяют 4 изомера

ПРИМЕР 2

Задание Смесь изомерных углеводородов (газов с плотностью по водороду равной 21) объемом 11,2 л (н.у.) вступила в реакцию с бромной водой. В результате было получено 40,4 г соответствующего дибромпроизводного. Какое строение имеют эти углеводороды? Определите их объемное содержание в смеси (в %).
Решение Общая формула углеводородов C х H у.

Рассчитаем молярную массу углеводородов:

Следовательно, формула углеводородов – С 3 Н 6 . Такую формулу имеют только два вещества – пропен и циклопропан.

С бромной водой реагирует только пропен:

Рассчитаем количество вещества дибромпроизводного:

По уравнению реакции:

n(пропена) моль

Суммарное количество углеводородов в смеси равно:

Самыми простыми органическими соединениями являются предельные и непредельные углеводороды. К ним относят вещества класса алканов, алкинов, алкенов.

Формулы их включают атомы водорода и углерода в определенной последовательности и количестве. Они часто встречаются в природе.

Определение алкенов

Другое их название - олефины или углеводороды этиленовые. Именно так назвали данный класс соединений в 18 столетии при открытии маслянистой жидкости − хлористого этилена.

К алкенам относятся вещества, состоящие из водородных и углеродных элементов. Они относятся к ациклическим углеводородам. В их молекуле присутствует единственная двойная (ненасыщенная) связь, соединяющая два углеродных атома между собой.

Формулы алкенов

Каждый класс соединений имеет свое химическое обозначение. В них символами элементов периодической системы указывается состав и структура связи каждого вещества.

Общая формула алкенов обозначается следующим образом: C n H 2n , где число n больше или равняется 2. При ее расшифровке видно, что на каждый атом углерода приходится по два атома водорода.

Молекулярные формулы алкенов из гомологического ряда представлены следующими структурами: C 2 H 4 , C 3 H 6 , C 4 H 8 , C 5 H 10 , C 6 H 12 , C 7 H 14 , C 8 H 16 , C 9 H 18 , C 10 H 20 . Видно, что каждый последующий углеводород содержит на один больше углерода и на 2 больше водорода.

Существует графическое обозначение расположения и порядка химических соединений между атомами в молекуле, которое показывает формула алкенов структурная.С помощью валентных черточек обозначается связь углеродов с водородами.

Формула алкенов структурная может быть изображена в развернутом виде, когда показываются все химические элементы и связи. При более кратком выражении олефинов не показывается соединение углерода и водорода с помощью валентных черточек.

Формулой скелетной обозначают самую простую структуру. Ломаной линией изображают основу молекулы, в которой атомы углерода представлены ее верхушками и концами, а звеньями указывают водород.

Как образуются наименования олефинов

CH 3 -HC=CH 2 + H 2 O → CH 3 -OHCH-CH 3 .

При воздействии на алкены кислотой серной происходит процесс сульфирования:

CH 3 -HC=CH 2 + HO−OSO−OH → CH 3 -CH 3 CH-O−SO 2 −OH.

Реакция протекает с образованием кислых эфиров, например, изопропилсерной кислоты.

Алкены подвержены окислению во время их сжигания при действии кислорода с формированием воды и газа углекислого:

2CH 3 -HC=CH 2 + 9O 2 → 6CO 2 + 6H 2 O.

Взаимодействие олефиновых соединений и разбавленного калия перманганата в форме раствора приводит к возникновению гликолей или спиртов двухатомного строения. Данная реакция также является окислительной с образованием этиленгликоля и обесцвечиванием раствора:

3H 2 C=CH 2 + 4H 2 O+ 2KMnO 4 → 3OHCH-CHOH+ 2MnO 2 +2KOH.

Молекулы алкенов могут быть задействованы в процессе полимеризации со свободнорадикальным или катионно-анионным механизмом. В первом случае под влиянием пероксидов получается полимер типа полиэтилена.

По второму механизму катионными катализаторами выступают кислоты, а анионными являются вещества металлорганические с выделением стереоселективного полимера.

Что такое алканы

Их еще называют парафинами или предельными ациклическими углеводородами. Они обладают линейной или разветвлённой структурой, в которой содержатся только насыщенные простые связи. Все представители данного класса имеют общую формулу C n H 2n+2 .

В их составе присутствуют только атомы углерода и водорода. Общая формула алкенов образуется из обозначения предельных углеводородов.

Названия алканов и их характеристика

Самым простым представителем данного класса является метан. За ним следуют вещества типа этана, пропана и бутана. В основе их названия лежит корень числительного на греческом языке, к которому прибавляют суффикс -ан. Наименования алканов занесены в IUPAC номенклатуру.

Общая формула алкенов, алкинов, алканов включает только две разновидности атомов. К ним относятся элементы углерода и водорода. Количество углеродных атомов во всех трех классах совпадает, отличие наблюдается только в численности водорода, который может отщепляться или присоединяться. Из получают ненасыщенные соединения. У представителей парафинов в молекуле содержится на 2 атома водорода больше, чем у олефинов, что подтверждает общая формула алканов, алкенов. Алкенов структура считается ненасыщенной за счет наличия двойной связи.

Если соотнести число во-до-ро-дных и уг-ле-ро-дных ато-мов в ал-ка-нах, то значение будет мак-си-маль-ным в сравнении с другими классами уг-ле-во-до-ро-дов.

Начиная с метана и заканчивая бутаном (от С 1 до С 4), вещества существуют в газообразном виде.

В жидкой форме представлены углеводороды гомологического промежутка от С 5 до С 16 . Начиная с алкана, имеющего в основной цепи 17 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету и оптические видоизменения молекулы.

В парафинах углеродные ва-лент-но-сти считаются полностью за-ня-тыми соседними уг-ле-ро-да-ми или во-до-ро-да-ми с образованием связи σ-типа. С хи-ми-че-ской точки зрения это обуславливает их слабые свой-ства, именно поэтому алканы носят название пре-дель-ны-х или на-сы-щен-ны-х уг-ле-во-до-ро-дов, лишенных сродства.

Они вступают в реакции замещения, связанные с галогенированием по радикальному типу, сульфохлорированием или нитрованием молекулы.

Парафины подвергаются процессу окисления, горения или разложения при высоких температурах. Под действием ускорителей реакций происходит отщепление атомов водорода или дегидрирование алканов.

Что такое алкины

Их еще называют ацетиленовыми углеводородами, у которых в цепочке углеродной присутствует тройная связь. Структура алкинов описывается общей формулой C n H 2 n-2 . Из нее видно, что в отличие от алканов, у ацетиленовых углеводородов недостает четыре атома водорода. Их заменяет тройная связь, образованная двумя π- соединениями.

Такое строение обуславливает химические свойства данного класса. Структурная формула алкенов и алкинов наглядно показывает ненасыщенность их молекул, а также наличие двойной (H 2 C꞊CH 2) и тройной (HC≡CH) связи.

Наименование алкинов и их характеристика

Самым простым представителем является ацетилен или HC≡CH. Его также именуют этином. Происходит оно от названия насыщенного углеводорода, в котором убирают суффикс -ан и добавляют -ин. В наименованиях длинных алкинов цифрой указывают расположение тройной связи.

Зная строение углеводородов насыщенных и ненасыщенных, можно определить, под какой буквой обозначена общая формула алкинов: а) CnH2n; в) CnH2n+2; c) CnH2n-2; г) CnH2n-6. Правильным ответом будет третий вариант.

Начиная с ацетилена и заканчивая бутаном (от С 2 до С 4), вещества имеют газообразную природу.

В жидкой форме находятся углеводороды гомологического промежутка от С 5 до С 17 . Начиная с алкина, имеющего в основной цепи 18 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету, по положению связи тройной, а также межклассовые видоизменения молекулы.

По химическим характеристикам ацетиленовые углеводороды подобны алкенам.

Если у алкинов тройная связь концевая, то они выполняют функцию кислоты с образованием солей алкинидов, например, NaC≡CNa. Наличие двух π-связей делает молекулу ацетиледина натрия сильным нуклеофилом, вступающим в реакции замещения.

Ацетилен подвергается хлорированию в присутствии хлорида меди с получением дихлорацетилена, конденсации под действием галогеналкинов с выделением диацетиленовых молекул.

Алкины участвуют в реакциях принцип которых лежит в основе галогенирования, гидрогалогенирования, гидротации и карбонилирования. Однако такие процессы протекают слабее, чем у алкенов с двойной связью.

Для ацетиленовых углеводородов возможны реакции присоединения по нуклеофильному типу молекулы спирта, первичного амина или сероводорода.

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 - 30 °С. При обычных условиях алкены С 2 — С 4 - газы. С 5 – С 15 - жидкости, начиная с C 16 - твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p -связь. К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:

При отщеплении Н 2 O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева .

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH 2 Br —CHBr —CH 3 + Mg → СН 2 =СН-СН 3 + Mg Вr 2 .

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p -связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения , обозначаемому символом A E (от англ, addition electrophilic ). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.

На первой стадии электрофильная частица (чаще всего это бывает протон H +) взаимодействует с p -электронами двойной связи и образует p -комплекс, который затем превращается в карбокатион путем образования ковалентной s -связи между электрофильной частицей и одним из атомов углерода:

алкен p -комплекс карбокатион

На второй стадии карбокатион реагирует с анионом X — , образуя вторую s -связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p -электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают p -электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова : при присоединении полярных молекул типа НХ(X = Hal , ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование . При взаимодействии алкенов с галогеноводородами (HCl , НВr ) образуются алкилгалогениды:

СН 3 -СН=СН 2 + НВr ® СН 3 -СНВr-СН 3 .

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:

R-O-O-R
СН 3 -СН=СН 2 + НВr СН 3 -СН 2 -СН 2 Вr

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

2) Гидратация . При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова:

СН 3 -СН=СН 2 + НОН ® СН 3 -СН(ОН)-СН 3 .

3) Галогенирование . Алкены обесцвечивают бромную воду:

СН 2 =СН 2 + Вr 2 ® ВrСН 2 -СН 2 Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование . Присоединение водорода происходит под действием металлических катализаторов:

где R = Н, СН 3 , Cl , С 6 Н 5 и т.д. Молекула CH 2 =CHR называется мономером, полученное соединение - полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера ) образуются двухатомные спирты:

ЗСН 2 =СН 2 + 2КМn О 4 + 4Н 2 О ® ЗНОСН 2 -СН 2 ОН + 2MnO 2 ↓ + 2KOH .

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV ). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО 2 , например:

[О]
СН 3 -СН=СН-СН 3 2СН 3 -СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

С n Н 2 n + Зn /2О 2 ® n СО 2 + n Н 2 О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

С n Н 2n + nО 2 ® nCO + nH 2 O .

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой - при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены - важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.

Алкены (олефины ) – это углеводороды, в молекулах которых содержатся атомы углерода, соединенные между собой двойной связью (непредельные углеводороды ряда этилена). Простейший представитель – этилен С 2 Н 4 , общая формула гомологического ряда этиленовых углеводородов С n Н 2n (при п ≥ 2).

Систематические названия олефинов производятся от корней названий алканов с заменой суффикса – ан → – ен :

Сохраняются также традиционные названия с заменой суффикса – ан на – илен : С 2 Н 4 – этилен, С 3 Н 6 – пропилен, С 4 Н 8 – бутилен; использование названия амилен для алкена С 5 Н 10 не рекомендуется.

Положение двойной связи С=С в изомерах строения (начиная с алкена С 4) указывается цифрой после названия:

Радикал этилена – этенил СН 2 =СН – обычно называют винил, пропена – пропенил СН 2 =СН – СН 2 – именуют аллил.

Другой вид изомерии в непредельных углеводородах, помимо структурной изомерии, осуществляется потому, что атомы углерода, образующие двойную связь, находятся в sр 2 ‑гибридном состоянии; σ‑составляющая двойной связи С=С и σ‑связи С – Н лежат в одной плоскости под углом 120° друг к другу, а π‑составляющая двойной связи С=С представляет собой электронное облако, вытянутое в направлении, перпендикулярном плоскости о‑связей. Следствием такого строения алкенов является возможность геометрической изомерии (или цис‑транс‑изомерии) в зависимости от положения заместителей (атомов или радикалов):

(цис – от лат. «рядом, по одну сторону», транс – от лат. «напротив, по разные стороны»).

Алкены С 2 –С 4 при комнатной температуре – бесцветные газы со слабым запахом нефти, малорастворимые в воде; алкены С 5 –C 18 – жидкости, алкены C 19 и выше – твердые вещества.

Важнейшие химические свойства алкенов определяются тем, что в силу меньшей прочности π‑связи (по сравнению с σ‑связью) она легко разрывается, в результате чего протекают реакции присоединения и образуются насыщенные органические соединения. Как правило, такие реакции идут в мягких условиях, часто на холоду и в растворителях, например воде, тетрахлорметане СCl 4 и др.:

Аналогично протекает взаимодействие алкенов с бромоводородом:

Присоединение галогеноводородов к несимметричным алкенам теоретически может привести к двум продуктам:

Согласно правилу Марковникова, присоединение галогеноводородов к несимметричным алкенам протекает так, что водород направляется к атому углерода, который уже содержит большее число атомов водорода. В приведенной выше реакции продуктом будет 2‑иодпропан СН 3 СН(I)СН 3 .


По правилу Марковникова протекает и реакция гидратации, т. е. реакция присоединения воды в присутствии серной кислоты. Она происходит в две стадии:

а) вначале образуется алкилсерная кислота, т. е. H 2 SO 4 присоединяется к алкену:

б) затем происходит ее необратимый гидролиз:

Алкены обесцвечивают раствор перманганата калия на холоду в нейтральной среде, при этом образуются гликоли (двухатомные спирты):

Алкены способны вступать в реакции полимеризации:

Качественные реакции на алкены обесцвечивание бромной воды и раствора КMnO 4 (уравнения реакций см. выше).

Алкадиены – непредельные углеводороды, в молекулах которых содержатся две связи С=С. Общая формула алкадиенов С n Н 2n‑2 (n ≥ 3), формула совпадает с таковой для алкинов.

Примеры :

Большое практическое значение имеют сопряженные диены, в молекулах которых связи С=С разделены одинарной связью С – С:

Дивинил и изопрен – традиционные названия.

Дивинил – бесцветный, легко сжижающийся (при ‑4,5 °C) газ, изопрен – низкокипящая (34,1 °C) жидкость.

Алкадиены вступают в те же реакции присоединения , что и алкены. Сопряженные диены имеют особые свойства, в частности, в реакциях присоединения; они образуют продукты 1,4‑присоединения с одной двойной связью посредине:

Алкадиены способны полимеризоваться с образованием каучуков:

Полиметилбутадиеновый каучук – это полимер, существующий в природе (натуральный каучук), а полибутадиеновый каучук получен искусственно (С. В. Лебедев, 1932 г.) и называется синтетическим каучуком.

Получение: для алкенов в промышленности используют метод каталитического дегидрирования алканов:

В лаборатории алкены получают:

1) дегидратацией спиртов (отщепление воды от спиртов):

2) дегидрогалогенированиеж – отщеплением галогеноводорода от моногалогенопроизводного под действием спиртового раствора щелочи:

3) дегалогенированиеж – отщеплением галогенов от дигалогенопроизводных, в которых атомы галогена находятся у соседних атомов углерода:

Промышленное получение дивинила:

1) дегидрирование бутана:

2) способ Лебедева – одновременное отщепление воды и водорода от этанола на катализаторе (ZnO/Al 2 O 3):

Алкены используются для органического синтеза, производства пластмасс, искусственного моторного топлива, диеновые углеводороды – исходное сырье в промышленном синтезе каучуков.

Алкины

Алкины – углеводороды с тройной связью C≡C в молекулах (непредельные углеводороды ряда ацетилена). Простейший представитель этого ряда – ацетилен С 2 Н 2 , общая формула алкинов C n H 2n‑2 (при n ≥ 2).

Названия простейших алкинов:

С 2 Н 2 – этин (традиционно: ацетилен)

С 3 Н 4 – пропин (метилацетилен)

С 4 Н 6 – бутин

Изомеры бутина:

Ацетилен, пропин и бутин‑1 – бесцветные газы при комнатной температуре, бутин‑2 – легкокипящая жидкость, обладает легким «эфирным» запахом.

В алкинах атомные орбитали углерода у тройной связи имеют sp‑ гибридизацию (линейное строение). Наличие двух π‑связей обусловливает их химические свойства, в частности высокую способность к реакциям ступенчатого присоединения водорода, хлора, брома, галогеноводородов, воды:

(присоединение НCl к хлорэтену происходит по правилу Марковникова; хлорэтен традиционно называют хлорвинилом или винилхлоридом);

г) реакция Кучерова (гидратация на катализаторе)

При циклизации ацетилена образуется бензол:

Упомянутый выше хлорвинил способен полимеризоваться:

Поливинилхлорид (ПВХ) – полимер, основа пластмассы, волокон и пленок, применяется в производстве труб, искусственной кожи, электроизоляции, пеноматериалов.

Качественные реакции:

1) на алкины любого строения – обесцвечивание раствора КMnO 4 , чаще всего происходит разрыв углеродной цепи по месту тройной связи (ср. с алкенами);

2) на алкины с концевой тройной связью – замещение концевого атома водорода на медь (I) с образованием ярко‑красного осадка:

Получение: в промышленности ацетилен ранее получали гидролизом дикарбида (ацетиленида) кальция:

(неприятный «карбидный» запах газа обусловлен примесями, главным образом фосфином РН 3).

Современный способ – пиролиз (термическое разложение) метана:

В лаборатории для получения ацетилена и его гомологов используют взаимодействие дигалогенопроизводных алканов со щелочами в спиртовом растворе при нагревании:

(обязательное условие – атомы галогенов должны находиться при соседних атомах углерода). Эта реакция может проходить в одну стадию (как показано выше), но чаще – в две стадии:

Алкины, особенно ацетилен, используются как исходное сырье в химической промышленности для многих органических синтезов. Кроме того, ацетилен благодаря высокой теплотворной способности сгорания:

применяется для автогенной сварки и резки металлов.

Арены

Арены – это непредельные углеводороды, которые можно рассматривать как производные простейшего из них – бензола С 6 Н 6 . Общая формула углеводородов гомологического ряда бензола С n Н 2n‑6 (при n ≥ 6).

В молекуле бензола все атомы углерода находятся в sр 2 ‑гибридизации, каждый атом углерода соединен в одной плоскости σ‑связями с двумя другими атомами углерода и одним атомом водорода. У атома углерода остается еще облако четвертого валентного электрона, расположенное перпендикулярно плоскости. Эти облака участвуют в образовании π‑связи, причем в молекуле образуются не три отдельные π‑связи (как думали раньше, см. формулу Кекуле, 1865 г.), а единая шестицентровая (С 6) π‑связь (все атомы равноценны):

Формула Кекуле часто применяется в тех случаях, когда необходимо более наглядно представить протекание реакции с участием бензольного кольца С 6 ; его изображение:

В обеих формулах атомы С кольца и не участвующие в реакции атомы Н опускаются (для краткости). Некоторые простейшие гомологи бензола:

Радикал бензола С 6 Н 5 называется фенил, радикал толуола С 6 Н 5 СН 2 – бензил.

Бензол и его ближайшие гомологи – жидкости без цвета, но с характерным запахом, имеют широкий интервал жидкого состояния. Практически не растворяются в воде, но хорошо смешиваются между собой и с другими органическими растворителями. Пар бензола сильно ядовит.

Несмотря на формальную непредельность, бензол отличается высокой устойчивостью к нагреванию и окислению (в гомологах бензола окисляется только боковая цепь). Характерными для бензола являются реакции замещения :

а) нитрование в присутствии концентрированной серной кислоты на холоду:

б) галогенирование в присутствии галогенидов железа (III):

в) алкилирование в присутствии хлорида алюминия:

Особый характер ненасыщенности бензола и его гомологов иллюстрируется этими химическими свойствами и называется «ароматическим» характером.

В производных бензола атом или группа, заместившие водород кольца, и само бензольное кольцо влияют друг на друга. По характеру влияния различают:

1) заместители I рода – CI, Br, I, СН 3 , С n Н 2n+1 , ОН и NH 2 . Они облегчают реакции дальнейшего замещения и направляют второй заместитель по отношению к себе в орто‑ (о‑, или 2‑) положение и в пара‑ (п ‑, или 4‑) положение [для запоминания: о рто – о коло, п ара – п ротив], например:

2) заместители II рода – NO 2 , С(Н)O, СООН и CN. Они затрудняют реакции дальнейшего замещения и направляют второй заместитель в мета‑ (м ‑, или 3‑) положение, например:

Очевидно, что существуют два орто‑ положения рядом с первым заместителем X, два мета ‑положения, отделенные от первого заместителя одним углеродом кольца, и лишь одно пара ‑положение через два атома углерода бензольного кольца:

Ранее уже отмечалось, что бензол стоек к окислению даже при действии сильных окислителей. Гомологи бензола с одним боковым радикалом вступают в реакции окисления только за счет радикала; при этом, какова бы ни была его длина, отщепляется вся цепь, кроме ближайшего к кольцу атома углерода (он создает карбоксильную группу):

В жестких условиях бензол вступает в реакции присоединения :

Стирол C 6 H 5 –CH=CH 2 , как этилен, легко полимеризуется:

Полистирол – термопластичная пластмасса (термопласт), прозрачный материал, размягчающийся при температуре выше 80 °C. Используется для изготовления изоляции электропроводов, посуды разового употребления, упаковочной массы (пенопласт).

Получение аренов – ароматизация алифатических и алициклических углеводородов, содержащихся в нефтяных или буроугольных бензиновых фракциях:

1) дегидрирование :

2) дегидроциклизация :

3) тримеризация ацетилена (устаревший способ):

Бензол и его гомологи используются в качестве малополярных растворителей (для каучука, лаковых смол, полимеров), сырье в органическом синтезе.

Случайные статьи

Вверх